International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) Volume 2, Issue 2, April 2011

On (1,2)*-Semi-Generalized-Star Homeomorphisms

O.Ravi¹, S. Pious Missier², T. Salai Parkunan³ And K.Mahaboob Hassain Sherieff⁴

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamilnadu, India, Email : siingam@yahoo.com
²Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamilnadu, India, Email : spmissier@yahoo.com
³Department of Mathematics, Arul Anandar College, Karumathur, Madurai Dt, Tamilnadu, India, Email : parkunan@yahoo.com
⁴Department of Mathematics, S.L.S. Mavmm AV College, Kallampatti, Madurai Dt., Tamilnadu, India, Email : rosesheril4@yahoo.com

Corresponding Author: T.SALAI PARKUNAN parkunan@yahoo.com

Abstract: The aim of this paper is to introduce the concept of $(1,2)^*$ -semi-generalised-star closed sets (briefly $(1,2)^*$ -sg*-closed sets) and study some of its properties. Their corresponding pre- $(1,2)^*$ -sg*-closed maps and $(1,2)^*$ -sg*-irresolute maps are defined and studied in this paper.

Keywords: $(1,2)^*$ -sg*-closed set, $(1,2)^*$ -sg*-open set, pre- $(1,2)^*$ -sg*-closed map, $(1,2)^*$ -sg*-irresolute map.

2000 Mathematics Subject Classification .54E55.

1.Introduction

The study of bitopological spaces was first initiated by Kelly [2] in the year 1963. Recently Ravi, Lellis Thivagar, Ekici and Many others [3, 5 - 14] have defined different weak forms of the topological notions, namely, semi-open, preopen, regular open and α -open sets in bitopological spaces.

In this paper, we introduce the notion of $(1,2)^*$ -semigeneralized-star closed (briefly, $(1,2)^*$ -sg*-closed) sets and investigate their properties. By using the class of $(1,2)^*$ -sg*closed sets, we study the properties of $(1,2)^*$ -sg*-open sets, pre- $(1,2)^*$ -sg*-closed maps and $(1,2)^*$ -sg*-irresolute maps. In most of the occasions our ideas are illustrated and substantiated by some suitable examples.

2. Preliminaries

Throughout this paper, X and Y denote bitopological spaces (X, τ_1 , τ_2) and (Y, σ_1 , σ_2) respectively, on which no separation axioms are assumed.

Definition 2.1

Let S be a subset of X. Then S is called $\tau_{1,2}$ -open [13] if S

= $A \cup B$, where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -C(X)).

Example 2.2

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}.$ Then the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ are $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are $\tau_{1,2}$ -closed.

Definition 2.3

Let A be a subset of a bitopological space X. Then

- (i) the τ_{1,2}-closure of A [12], denoted by τ_{1,2}-cl(A), is defined by ∩ {U: A ⊆ U and U is τ_{1,2}-closed };
- (ii) the τ_{1,2}-interior of A [12], denoted by τ_{1,2}-int(A), is defined by ∪ {U: U ⊆ A and U is τ_{1,2}-open}.

Remark 2.4

Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Now we recall some definitions and results, which are used in this paper.

Definition 2.5

A subset S of a bitopological space X is said to be $(1,2)^*$ semi-open [12] if S $\subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(S)).

The complement of $(1,2)^*$ -semi- open set is called $(1,2)^*$ -semi-closed.

The family of all $(1,2)^*$ -semi-open sets of X will be denoted by $(1,2)^*$ -SO(X).

The $(1,2)^*$ -semi-closure of a subset S of X is, denoted by $(1,2)^*$ -scl(S), defined as the intersection of all $(1,2)^*$ -semi-closed sets containing S.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) Volume 2, Issue 2, April 2011

Definition 2.6

A subset S of a bitopological space X is said to be a (1,2)*-sg-closed [10] if (1,2)*-scl(S) \subset U whenever S \subset U and U \in (1,2)*-SO(X).

Definition 2.7

A subset S of a bitopological space X is said to be a

(1,2)*-g-closed [14] if $\tau_{1,2}$ -cl(S) ⊂ U whenever S ⊂ U and U

 $\in (1,2)^*-O(X).$

The complement of $(1,2)^*$ -g-closed set is $(1,2)^*$ -g-open.

Definition 2.8

A map $f: X \rightarrow Y$ is called

(i) (1,2)*-continuous [12] if $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X for every $\sigma_{1,2}$ -closed set V in Y.

(ii) (1,2)*-open map [11] if the image of every $\tau_{1,2}$ -open set is an $\sigma_{1,2}$ -open.

(iii) $(1,2)^*$ -irresolute [9] if the inverse image of $(1,2)^*$ -semi-open set is $(1,2)^*$ -semi-open.

Definition 2.9

A map $f: X \rightarrow Y$ is called $(1,2)^*$ -homeomorphism [11] if f

is bijection, $(1,2)^*$ -continuous and $(1,2)^*$ -open.

3. (1,2)*-Semi-Generalised- Star-Closed Sets

Definition 3.1

A subset A of a bitopological space X is called a $(1,2)^*$ semi-generalised-star-closed (briefly, $(1,2)^*$ -sg*-closed) if

 $\pmb{\tau}_{1,2}\text{-}cl(A) \subset U$ whenever $A \subset U$ and U is (1,2)*-semi-open in

Х.

Example 3.2

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}.$

Then the sets in { ϕ , X, {b}, {c}, {b, c}} are $\tau_{1,2}$ -open. Clearly the sets in { ϕ , X, {a}, {a, b}, {a, c}} are (1,2)*-sg*closed.

Theorem 3.3

Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -sg*-closed.

Proof:

Let A be a $\tau_{1,2}$ -closed subset of X. Let $A \subset U$ and U be (1,2)*-semi-open. $\tau_{1,2}$ -cl(A) = A, since A is $\tau_{1,2}$ -closed. Therefore $\tau_{1,2}$ -cl(A) \subset U. Hence A is (1,2)*-sg*-closed.

Remark 3.4

The converse of Theorem 3.3 need not be true as shown in the following example.

Example 3.5

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X\}$. Then the set {a, c} is (1,2)*-sg*-closed but not $\tau_{1,2}$ -closed.

Theorem 3.6

Every $(1,2)^*$ -sg*-closed set is $(1,2)^*$ -g-closed.

Proof:

Let A be a $(1,2)^*$ -sg*-closed subset of X. Let A \subset U and U be $\tau_{1,2}$ -open. Then U is $(1,2)^*$ -semi-open since every $\tau_{1,2}$ -open set is $(1,2)^*$ -semi-open. Since A is $(1,2)^*$ -sg*-closed and U is $(1,2)^*$ -semi-open, we have $\tau_{1,2}$ -cl(A) \subset U. Hence A is $(1,2)^*$ -g-closed.

Remark 3.7

The converse of Theorem 3.6 need not be true as shown in the following example.

Example 3.8

Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ are $\tau_{1,2}$ -open. Then the set $\{b, d\}$ is $(1,2)^*$ -g-closed but not $(1,2)^*$ -sg*-closed.

Remark 3.9

 $(1,2)^*$ -semi-closed sets and $(1,2)^*$ -sg*-closed sets are independent of each other.

Example 3.10

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are $\tau_{1,2}$ -open. Clearly the set $\{b\}$ is $(1,2)^*$ -semi-closed set but not $(1,2)^*$ -sg*-closed.

Example 3.11

Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}, \{a, b, c\}\}$. Then the sets in $\{\phi, X, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ are $\tau_{1,2}$ -open. Clearly the set $\{a, c, d\}$ is $(1,2)^*$ -sg*-closed set but not $(1,2)^*$ -semi-closed.

Remark 3.12

Union of two $(1,2)^*$ -sg*-closed sets need not be a $(1,2)^*$ -sg*-closed.

Example 3.13

 {b}, {c}, {a, b}, {b, c}} are $(1,2)^*$ -sg*-closed. But {a} \cup {c} = {a, c} is not $(1,2)^*$ -sg*-closed.

Theorem 3.14

A (1,2)*-sg*-closed set which is (1,2)*-semi-open is $\tau_{1,2}$ -closed.

Proof:

Let A be a $(1,2)^*$ -sg*-closed set which is $(1,2)^*$ -semiopen. We have A \subset A and A is $(1,2)^*$ -semi-open. Since A is $(1,2)^*$ -sg*-closed, $\tau_{1,2}$ -cl(A) \subset A. It is well known that A \subset $\tau_{1,2}$ -cl(A). Hence A is $\tau_{1,2}$ -closed.

Result 3.15

Being $(1,2)^*$ -semi-open is a sufficient condition for a $(1,2)^*$ -sg*-closed set to be $\tau_{1,2}$ -closed. However this condition is not necessary. There are $(1,2)^*$ -sg*-closed sets which are $\tau_{1,2}$ -closed but not $(1,2)^*$ -semi-open.

Example 3.16

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ are $\tau_{1,2}$ open.Clearly the set $\{b\}$ is $(1,2)^*$ -sg*-closed set and $\tau_{1,2}$ closed but not $(1,2)^*$ -semi-open.

Theorem 3.17

If A is $(1,2)^*$ -sg*-closed and A \subset B $\subset \tau_{1,2}$ -cl(A), then B is $(1,2)^*$ -sg*-closed.

Proof:

Let A be a (1,2)*-sg*-closed subset of X. Since $A \subset B \subset \tau_{1,2}$ -cl(A), we have $\tau_{1,2}$ -cl(B) $\subset \tau_{1,2}$ -cl(A). Let $B \subset U$ and U be (1,2)*-semi-open. Then $A \subset U$, $\tau_{1,2}$ -cl(A) $\subset U$ since A is (1,2)*-sg*-closed. Hence $\tau_{1,2}$ -cl(B) $\subset U$. Hence B is (1,2)*-sg*-closed.

Theorem 3.18

Let A be $(1,2)^*$ -sg*-closed in X but not $\tau_{1,2}$ -closed. Then for every $\tau_{1,2}$ -open set U \subset A, there exists an $\tau_{1,2}$ -open set V such that A intersects V and $\tau_{1,2}$ -cl(U) does not intersect V. **Proof:**

Assume that A is $(1,2)^*$ -sg*-closed but not $\tau_{1,2}$ -closed. Let $U \subset A$ and U be $\tau_{1,2}$ -open. We claim that $A \not\subset \tau_{1,2}$ -cl(U). If A

 $U \subset A$ and U be $\tau_{1,2}$ -open. We claim that $A \not\subset \tau_{1,2}$ -cl(U). If A $\subset \tau_{1,2}$ -cl(U), then $U \subset A \subset \tau_{1,2}$ -cl(U) and U is $\tau_{1,2}$ -open. Hence A is $(1,2)^*$ -semi-open. Therefore A is $(1,2)^*$ -sg*-closed and $(1,2)^*$ -semi-open which implies A is $\tau_{1,2}$ -closed. But A is not $\tau_{1,2}$ -closed. Hence A $\not\subset \tau_{1,2}$ -cl(U). Hence there exists $x \in A$ and $x \notin \tau_{1,2}$ -cl(U). Let $V = (\tau_{1,2}$ -cl(U))^c. Then V is $\tau_{1,2}$ -open and $\tau_{1,2}$ -cl(U) does not intersect V. Since $x \notin \tau_{1,2}$ cl(U), we have $x \in (\tau_{1,2}$ -cl(U))^c. Hence $x \in V$. Since $x \in A$ and $x \in V$, $A \cap V \neq \phi$, A intersects V and $\tau_{1,2}$ -cl(U) does not intersect V.

Definition 3.19

Let X be a bitopological space and $A \subset X$. Then $(1,2)^*$ -frontier of A, denoted by $(1,2)^*$ -Fr(A), is defined to be the set $\tau_{1,2}$ -cl(A) \ $\tau_{1,2}$ -int(A).

Theorem 3.20

Let A be $(1,2)^*$ -sg*-closed and A \subset U where U is $\tau_{1,2}^-$ open. Then $(1,2)^*$ -Fr(U) $\subset \tau_{1,2}^-$ -int(A^c).

Proof:

Let A be $(1,2)^*$ -sg*-closed and let A \subset U where U is $\tau_{1,2}$ open. Then $\tau_{1,2}$ -cl(A) \subset U. Take any $x \in (1,2)^*$ -Fr(U).We have $x \in \tau_{1,2}$ -cl(U) $\setminus \tau_{1,2}$ -int(U). Hence $x \in \tau_{1,2}$ -cl(U) \setminus U since U is $\tau_{1,2}$ -open. Hence $x \notin$ U. Therefore $x \notin \tau_{1,2}$ -cl(A). Hence $x \in (\tau_{1,2}$ -cl(A))^c. Therefore $x \in \tau_{1,2}$ -int(A^c). Hence $(1,2)^*$ -Fr(U) $\subset \tau_{1,2}$ -int(A^c).

Definition 3.21

A bitopological space X is called RM-space if every subset in X is either $\tau_{1,2}$ -open or $\tau_{1,2}$ -closed.

Theorem 3.22

In a RM-space X, every $(1,2)^*$ -sg*-closed set is $\tau_{1,2}^-$ closed.

Proof:

Let X be a RM-space. Let A be a $(1,2)^*$ -sg*-closed subset of X. Then A is $\tau_{1,2}$ -open or $\tau_{1,2}$ -closed. If A is $\tau_{1,2}$ -closed, then nothing to prove. If A is $\tau_{1,2}$ -open, then A is $(1,2)^*$ semi-open. Since A is $(1,2)^*$ -sg*-closed and A is $(1,2)^*$ semi-open, by Theorem 3.14, A is $\tau_{1,2}$ -closed.

Remark 3.23

The converse of Theorem 3.22 need not be true as shown in the following example.

Example 3.24

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}$ are $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b, c\}\}$ are $(1,2)^*$ -sg*-closed. Therefore every $(1,2)^*$ -sg*-closed set is $\tau_{1,2}$ -closed. But X is not a RM-space.

Definition 3.25

A subset A of a bitopological space X is said to be $(1,2)^*$ semi-generalised-star-open (briefly, $(1,2)^*$ -sg*-open) if A^c is $(1,2)^*$ -sg*-closed.

Theorem 3.26

Every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg*-open.

Proof:

Let A be an $\tau_{1,2}$ -open set of X. Then A^c is $\tau_{1,2}$ -closed. Also A^c is $(1,2)^*$ -sg*-closed since every $\tau_{1,2}$ -closed set is $(1,2)^*$ -sg*-closed. Hence A is $(1,2)^*$ -sg*-open.

Remark 3.27

The converse of Theorem 3.26 need not be true as shown in the following example.

Example 3.28

Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a, b, d\}\}$ and $\tau_2 = \{\phi, X, \{b, c, d\}\}$. Then the sets in $\{\phi, X, \{a, b, d\}, \{b, c, d\}\}$ are $\tau_{1,2}$ -open. Clearly the set $\{b\}$ is $(1,2)^*$ -sg*-open but not $\tau_{1,2}$ -open.

Theorem 3.29

Every $(1,2)^*$ -sg*-open set is $(1,2)^*$ -g-open.

Proof:

Let A be a $(1,2)^*$ -sg*-open set of X. Then A^c is $(1,2)^*$ -sg*-closed. Also A^c is $(1,2)^*$ -g-closed, since every $(1,2)^*$ -sg*-closed set is $(1,2)^*$ -g-closed. Hence A is $(1,2)^*$ -g-open.

Remark 3.30

The converse of Theorem 3.29 need not be true as shown in the following example.

Example 3.31

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are $\tau_{1,2}$ -open. Then the set $\{c\}$ is $(1,2)^*$ -g-open but not $(1,2)^*$ -sg*-open.

Remark 3.32

Intersection of two $(1,2)^*$ -sg*-open sets need not be a $(1,2)^*$ -sg*-open.

Example 3.33

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are $(1,2)^*$ -sg*-open. But $\{a, b\} \cap \{b, c\} = \{b\}$ is not $(1,2)^*$ -sg*-open.

Theorem 3.34

If A is $(1,2)^*$ -sg*-open and $\tau_{1,2}$ -int(A) \subset B \subset A. Then B is $(1,2)^*$ -sg*-open.

Proof:

Let A be $(1,2)^*$ -sg*-open. Hence A^c is $(1,2)^*$ -sg*-closed. Since $\tau_{1,2}$ -int(A) \subset B \subset A, $(\tau_{1,2}$ -intA)^c \supset B^c \supset A^c. Therefore A^c \subset B^c \subset $\tau_{1,2}$ -cl(A^c). Hence by Theorem 3.17, B^c is $(1,2)^*$ -sg*-closed. Hence B is $(1,2)^*$ -sg*-open.

Theorem 3.35

If A is $(1,2)^*$ -sg*-open and A \supset F where F is $\tau_{1,2}$ -closed then $(1,2)^*$ -Fr(F) $\subset \tau_{1,2}$ -int(A).

Proof:

Given that A is $(1,2)^*$ -sg*-open and A \supset F where F is $\tau_{1,2}$ closed. Then A^c is $(1,2)^*$ -sg*-closed, A^c \subset F^c and F^c is $\tau_{1,2}$ open. By Theorem 3.20 $(1,2)^*$ -Fr(F^c) $\subset \tau_{1,2}$ -int(A). Hence $(1,2)^*$ -Fr(F) $\subset \tau_{1,2}$ -int(A) since $(1,2)^*$ -Fr(F^c) = $(1,2)^*$ -Fr(F).

Theorem 3.36

In a RM-space X, every $(1,2)^*$ -sg*-open set is $\tau_{1,2}$ -open.

Proof:

Let X be a RM-space. Let A be a $(1,2)^*$ -sg*-open subset of X. Then A^c is $(1,2)^*$ -sg*-closed. Since X is a RM-space, A^c is $\tau_{1,2}$ -closed. Hence A is $\tau_{1,2}$ -open.

Remark 3.37

The converse of Theorem 3.36 need not be true as shown in the following example.

Example 3.38

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{b\}\}$ are $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b\}\}$ are $(1,2)^*$ -sg*-open. Therefore every $(1,2)^*$ -sg*-open set is $\tau_{1,2}$ -open. But X is not a RM-space.

Theorem 3.39

Any singleton set is either $(1,2)^*$ -semi-closed or $(1,2)^*$ -sg*-open.

Proof:

Take {x}, if it is $(1,2)^*$ -semi-closed then nothing to prove. If it is not $(1,2)^*$ -semi-closed, then {x}^c is not $(1,2)^*$ -semiopen. Therefore X is the only $(1,2)^*$ -semi-open set containing {x}^c. Therefore {x}^c is $(1,2)^*$ -sg*-closed. Hence {x} is $(1,2)^*$ -sg*-open. Therefore {x} is $(1,2)^*$ -semi-closed or $(1,2)^*$ -sg*-open. International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) Volume 2, Issue 2, April 2011

4.(1,2)*-Semi-Generalised-Star

Homeomorphisms

Definition 4.1

A function f: $X \rightarrow Y$ is called a (1,2)*-closed if f(V) \in (1,2)*-C(Y) for every $\tau_{1,2}$ -closed set V in X.

Theorem 4.2

A function $f : X \to Y$ is (1,2)*-closed if and only if $\sigma_{1,2}$ cl[f(A)] \subseteq f [$\tau_{1,2}$ -cl(A)] for every A \subseteq X.

Proof:

Let f be $(1,2)^*$ -closed and let $A \subseteq X$. Then f $[\tau_{1,2}\text{-cl}(A)] \in (1,2)^*\text{-C}(Y)$. But $f(A) \subseteq f[\tau_{1,2}\text{-cl}(A)]$. Then $\sigma_{1,2}\text{-cl}[f(A)] \subseteq f[\tau_{1,2}\text{-cl}(A)]$. Conversely, let $A \subseteq X$ be a $\tau_{1,2}\text{-closed}$ set. Then by assumption, $\sigma_{1,2}\text{-cl}[f(A)] \subseteq f[\tau_{1,2}\text{-cl}(A)] = f(A)$. This shows that $f(A) \in (1,2)^*\text{-C}(Y)$. Hence f is $(1,2)^*\text{-closed}$.

Definition 4.3

A function f: $X \rightarrow Y$ is called a (1,2)*-sg*-continuous if f¹ (V) is (1,2)*-sg*-closed in X for every $\sigma_{1,2}$ -closed set V of Y. **Theorem 4.4**

Let f: $X \to Y$ be a (1,2)*-homeomorphism. Then a subset A is (1,2)*-sg*-closed in $Y \Rightarrow f^{1}(A)$ is (1,2)*-sg*-closed in X.

Proof:

Let f: $X \to Y$ be a (1,2)*-homeomorphism. Let A be a $(1,2)^*$ -sg*-closed subset of Y. Let $B = f^1(A)$. Now to prove that B is (1,2)*-sg*-closed in X. Let U be any (1,2)*-semiopen set with $B \subset U$. Then $f(B) \subset f(U)$. Therefore $f(f^{-1}(A))$ \subset f(U). Since f is (1,2)*-bijective, f(f⁻¹(A)) = A. Therefore A \subset f(U). We claim that f(U) is (1,2)*-semi-open. Since U is $(1,2)^*$ -semi-open, $U \subset \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(U)). Then $f(U) \subset f(\tau_{1,2}$ $cl(\tau_{1,2}-int(U))) \subset \sigma_{1,2}-cl(f(\tau_{1,2}-int(U)))$, since f is $(1,2)^*$ continuous and $f(U) \subset \sigma_{1,2}$ -cl($\sigma_{1,2}$ -int f(U)) since f is (1,2)*open. Therefore f(U) is $(1,2)^*$ -semi-open. Since $A \subset f(U)$, f(U) is $(1,2)^*$ -semi-open and A is $(1,2)^*$ -sg*-closed. Therefore $\sigma_{1,2}$ -cl(A) \subset f(U). Hence f⁻¹($\sigma_{1,2}$ -cl(A)) \subset f⁻¹(f(U)). Since f is a (1,2)*-homeomorphism, $f^{-1}(\sigma_{1,2}-cl(A)) = \tau_{1,2}-cl(f^{-1})$ (A)). Therefore $\tau_{1,2}$ -cl (f¹(A)) \subset f¹(f(U)). Therefore $\tau_{1,2}$ -cl(B) \subset U. It means B is (1,2)*-sg*-closed in X. Hence f¹ (A) is (1,2)*-sg*-closed.

Theorem 4.5

Let f: X \rightarrow Y be a (1,2)*-homeomorphism. A subset A is (1,2)*-sg*-open in Y \Rightarrow f¹(A) is (1,2)*-sg*-open in X.

Proof:

A is (1,2)*-sg*-open in $Y \Rightarrow A^c$ is (1,2)*-sg*-closed in Y $\Rightarrow f^1(A^c)$ is (1,2)*-sg*-closed in $X \Rightarrow [f^1(A)]^c$ is (1,2)*sg*-closed in $X \Rightarrow f^1(A)$ is (1,2)*-sg*-open in X.

Theorem 4.6

Let f: $X \to Y$ be a (1,2)*-homeomorphism. A subset A is (1,2)*-sg*-closed in $X \Rightarrow f(A)$ is (1,2)*-sg*-closed in Y.

Proof:

Let f: X \rightarrow Y be a (1,2)*-homeomorphism. Assume that A is (1,2)*-sg*-closed in X. Let B = f(A). Now to prove that B is (1,2)*-sg*-closed in Y. Let U be a (1,2)*-semi-open set with B \subset U. That is f(A) \subset U. Hence f¹ (f(A)) \subset f¹ (U). Since f is (1,2)*-bijective, f¹(f(A)) = A. Therefore A \subset f¹ (U). Since U is (1,2)*-semi-open and f is a (1,2)*homeomorphism, f¹ (U) is (1,2)*-semi-open, we have A \subset f¹ (U), f¹ (U) is (1,2)*-semi-open and A is (1,2)*-sg*-closed. Therefore $\tau_{1,2}$ -cl(A) \subset f¹ (U). Hence f($\tau_{1,2}$ -cl(A)) \subset f(f¹ (U)). Since f is a (1,2)*-closed map, $\sigma_{1,2}$ -cl(f(A)) \subset f($\tau_{1,2}$ -cl(A)). Therefore $\sigma_{1,2}$ -cl(f(A)) \subset f[f¹ (U)]. Hence $\sigma_{1,2}$ -cl(B) \subset U. It means B is (1,2)*-sg*-closed in Y. Therefore image of a (1,2)*-sg*-closed set is (1,2)*-sg*-closed.

Theorem 4.7

Let f: X \rightarrow Y be a (1,2)*-homeomorphism. A is (1,2)*sg*-open in X \Rightarrow f(A) is (1,2)*-sg*-open in Y.

Proof:

A is $(1,2)^*$ -sg*-open in X \Rightarrow A^c is $(1,2)^*$ -sg*-closed in X. \Rightarrow f(A^c) is $(1,2)^*$ -sg*-closed in Y.

$$\Rightarrow [f(A)]^c \text{ is } (1,2)^*\text{-sg*-closed in Y}.$$
$$\Rightarrow f(A) \text{ is } (1,2)^*\text{-sg*-open in Y}.$$

Definition 4.8

Let X and Y be two bitopological spaces. A map f: $X \rightarrow Y$ is called a pre (1,2)*-sg*-closed if for each (1,2)*-sg*-closed set A in X, f(A) is (1,2)*-sg*-closed in Y.

Theorem 4.9

Every $(1,2)^*$ -homeomorphism is a pre $(1,2)^*$ -sg*-closed map.

Proof:

It follows from Theorem 4.6.

Definition 4.10

Let X and Y be two bitopological spaces. A map $f: X \rightarrow$ Y is called a pre- (1,2)*-sg*-open if for each (1,2)*-sg*-open set A in X, f(A) is (1,2)*-sg*-open in Y.

Theorem 4.11

Every $(1,2)^*$ -homeomorphism is a pre- $(1,2)^*$ -sg*-open map.

Proof:

It follows from Theorem 4.7.

Definition 4.12

Let X and Y be two bitopological spaces. A map $f: X \rightarrow$ Y is called $(1,2)^*$ -sg*-irresolute if for each $(1,2)^*$ -sg*-closed set A in Y, $f^{-1}(A)$ is $(1,2)^*$ -sg*-closed in X.

Theorem 4.13

Every $(1,2)^*$ -homeomorphism is $(1,2)^*$ -sg*-irresolute map.

Proof:

It follows from Theorem 4.4.

Theorem 4.14

f: $X \to Y$ is $(1,2)^*$ -sg*-irresolute if and only if inverse image of every $(1,2)^*$ -sg*-open set in Y is $(1,2)^*$ -sg*-open in X.

Proof:

A is $(1,2)^*$ -sg*-open in Y $\Leftrightarrow A^c$ is $(1,2)^*$ -sg*-closed in Y $\Leftrightarrow f^1(A^c)$ is $(1,2)^*$ -sg*-closed

in X.

 \Leftrightarrow [f¹ (A)]^c is (1,2)*-sg*-

closed in X.

 \Leftrightarrow f¹ (A) is (1,2)*-sg*-open in

Х.

Definition 4.15

Let X and Y be two bitopological spaces. A map $f: X \rightarrow$ Y is called a $(1,2)^*$ -sg*-homeomorphism if f is $(1,2)^*$ bijective, f is $(1,2)^*$ -sg*-irresolute and f^1 is $(1,2)^*$ -sg*irresolute.

Theorem 4.16

If f: $X \to Y$ is $(1,2)^*$ -bijective, then the following are equivalent.

1. f is $(1,2)^*$ -sg*-irresolute and f is pre- $(1,2)^*$ -sg*-closed.

2. f is $(1,2)^*$ -sg*-irresolute and f is pre- $(1,2)^*$ -sg*-open.

3. f is $(1,2)^*$ -sg*-homeomorphism.

Proof:

 $1 \Rightarrow 2$. We have f: X \rightarrow Y is (1,2)*-bijective, f is (1,2)*sg*- irresolute and f is pre-(1,2)*-sg*-closed. Since f is pre-(1,2)*-sg*-closed, A is (1,2)*-sg*-open in X \Rightarrow A^c is (1,2)*sg*-closed in X.

 \Rightarrow f(A^c) is (1,2)*-sg*-closed in Y.

 \Rightarrow [f(A)]^c is (1,2)*-sg*-closed in Y.

 \Rightarrow f(A) is (1,2)*-sg*-open in Y.

Hence f is a pre- $(1,2)^*$ -sg*-open map.

 $2 \Rightarrow 3$. We have f: X \rightarrow Y is (1,2)*-bijective, f is (1,2)*-sg*irresolute and f is pre-(1,2)*-sg*-open. Since f is pre-(1,2)*sg*-open, A is (1,2)*-sg*-open in X \Rightarrow f(A) is (1,2)*-sg*open in Y \Rightarrow (f¹)⁻¹(A) is (1,2)*-sg*-open in Y.

Hence f^1 is $(1,2)^*$ -sg*-irresolute. Hence f is a $(1,2)^*$ -sg*-homeomorphism.

 $3 \Rightarrow 1$. We have f: X \rightarrow Y is (1,2)*-bijective, f is (1,2)*-sg*irresolute and f⁻¹ is (1,2)*-sg*-irresolute. Now f⁻¹ is (1,2)*sg*-irresolute \Rightarrow f is pre-(1,2)*-sg*-closed.

Definition 4.17

Let X and Y be two bitopological spaces. A map $f: X \rightarrow$ Y is called (1,2)*-sg*-closed map if for each $\tau_{1,2}$ -closed set F of X, f(F) is (1,2)*-sg*-closed in Y.

Definition 4.18

Let X and Y be two bitopological spaces. A map f: $X \rightarrow Y$ is called $(1,2)^*$ -sg*-open if for each $\tau_{1,2}$ -open set U of X, f(U) is $(1,2)^*$ -sg*-open in Y.

Theorem 4.19

Every $(1,2)^*$ -homeomorphism is a $(1,2)^*$ -sg*-homeomorphism.

Proof:

It follows from the fact that every $(1,2)^*$ -continuous map is $(1,2)^*$ -sg*-continuous [10] and every $(1,2)^*$ -open map is a $(1,2)^*$ -sg*-open map [11].

Remark 4.20

The converse of Theorem 4.19 need not be true as shown in the following example.

Example 4.21

Let $X = \{a, b, c\} = Y$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. X, $\{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are $\tau_{1,2}$ - open. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{a, b\}\}$ are $\sigma_{1,2}$ -open. Define $f : X \to Y$ by f(a) = a, f(b) = b and f(c) = c. Clearly f is not a $(1,2)^*$ -homeomorphism since f is not an $(1,2)^*$ -open map. However f is $(1,2)^*$ -sg*-homeomorphism.

Theorem 4.22

If $f: X \to Y$ is an $(1,2)^*$ -irresolute $(1,2)^*$ -closed map, then F is $(1,2)^*$ -sg*-closed in $X \Rightarrow f(F)$ is $(1,2)^*$ -sg*-closed in Y. **Proof:**

Let F be a (1,2)*-sg*-closed subset of X. Now to prove that f(F) is (1,2)*-sg*-closed in Y. Let $f(F) \subset U$ and U be (1,2)*-semi-open. Then $F \subset f^{-1}(U)$. Since U is (1,2)*-semiopen and f is (1,2)*-irresolute. Therefore $f^{-1}(U)$ is (1,2)*semi-open. Since F is (1,2)*-sg*-closed, $F \subset f^{-1}(U)$ and f ¹(U) is (1,2)*-semi-open, $\tau_{1,2}$ -cl(F) $\subset f^{-1}(U)$. Hence $f(\tau_{1,2}$ cl(F)) $\subset f(f^{-1}(U)) \subset U$. Since f is a (1,2)*-closed map, $\sigma_{1,2}$ cl(f(F)) $\subset f(\tau_{1,2}$ -cl(F)). Hence $\sigma_{1,2}$ -cl(f(F)) $\subset U$. Therefore f(F) is (1,2)*-sg*-closed.

References

- N.Bourbaki, "General Topology", Part I, Addison-Wesley, 1996.
- [2] J.C.Kelly, "Bitopological spaces", Proc. London Math. Soc. Vol.13, pp. 71-89, 1963.
- [3] M.Lellis Thivagar, M.Margaret Nirmala, R.Raja Rajeshwari and E.Ekici, "A Note on (1,2)-GPR-closed sets", Math.Maced Vol.4, pp. 33-42, 2006.
- [4] M. Murugalingam, "A Study of Semi-Generalized Topology", Ph.D. Thesis, Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu, 2005.
- [5] O.Ravi, M.Lellis Thivagar and E.Ekici, "On (1,2)*sets and decompositions of bitopological (1,2)*continuous mappings", Kochi J.Math., Vol. 3, pp. 181-189, 2008.
- [6] O.Ravi, M.Lellis Thivagar and E.Hatir,
 "Decomposition of (1,2)*-continuity and (1,2)*-α Continuity", Miskolc Mathematical notes, Vol. 10,
 No. 2, pp. 163-171, 2009.

- [7] O.Ravi, K. Mahaboob Hassain Sherieff and M.Krishna Moorthy, "On decompositions of bitopological (1,2)*-A-continuity" (To appear in International Journal of Computer Science and emerging Technologies).
- [8] O.Ravi, G.Ram Kumar and M.Krishna Moorthy, "Decompositions of (1,2)*-α-continuity and (1,2)*αgs-continuity" (To appear in International Journal of computational and applied mathematics).
- [9] O.Ravi and M.Lellis Thivagar, "Remarks on λirresolute functions via (1,2)*-sets", Advances in Applied Mathematical Analysis, Vol. 5, No. 1 pp. 1-15, 2010.
- [10] O.Ravi and M.Lellis Thivagar, "A bitopological (1,2)*-semi-generalized continuous maps", Bull. Malays. Math. Sci. Soc. Vol. 2, No. 29(1), pp. 79-88, 2006.
- [11] O.Ravi, S.Pious Missier and T.Salai Parkunan, "On bitopological (1,2)*-generalized Homeomorphisms", Internat. J. Contemp. Math. Sci. Vol 5, No. 11, pp. 543-557, 2010.
- [12] O.Ravi, M. Lellis Thivagar, M.E.Abd El-Monsef,
 "Remarks on bitopological (1,2)*-quotient mappings",
 J. Egypt Math. Soc. Vol. 16, No. 1, pp. 17-25, 2008.
- [13] O.Ravi, M.Lellis Thivagar, M.Joseph Israel,
 K.Kayathri, "Mildly (1,2)*-Normal spaces and some bitopological functions", Mathematica Bohemica Vol. 135, No. 1, pp. 1-13, 2010.
- [14] O.Ravi, M.Lellis Thivagar, "On stronger forms of (1,2)*-quotient mappings in bitopological spaces", Internat. J. Math. Game theory and Algebra. Vol. 14. No.6, pp. 481-492, 2004.
- [15] M.K.R.S. Veerakumar, " \hat{g} -closed sets in topological spaces", Bull. Allah. Math. Soc., Vol. 18, pp. 99-112, 2003.